2018 Review of Nordic Total Merit Index

Introduction to the NTM-model Biological and economic assumptions Basic results

Lars Peter Sørensen, Jørn Pedersen, Jukka Pösö, Freddy Fikse Jan-Åke Eriksson, Morten Kargo, Ulrik Sander Nielsen Gert Pedersen Aamand January 2018

Nordisk Avlsværdi Vurdering • Nordic Cattle Genetic Evaluation

NAV

Overview of presentation

- General introduction to the NTM model
- Description of scenarios

NAV

- Assumptions: Biological, economic, production circumstances
- Results: Basic economic values

Nordic Total Merit Index

Nordic Total Merit Index

- = Index weight_{Yield}
- + Index weight_{Fert.}

NAV

- * (Yield index-100)
- * (Fertility index-100)
- + Index weight_{Udderhealth} * (Udder health index-100)
- + and so on: 15 main indexes

Behind the 15 main indices there are: 90 single traits Calculation of economic values are based on the value of each of the single traits

Single traits values: Definition

The value of improving the trait with one unit
 – keeping the remaining traits constant

- Future production circumstances for dairy cattle 10 years into the future:
 - Economy and production systems should be as expected in 2028
 - BUT especially economy is difficult/impossible to predict mostly based on current circumstances

Economic values for single traits

Annual accounting in a herd (in an Excel sheet)

- Income from production: Milk and beef
- All variable costs included

The bottom line:

cow)

NДV

- Annual profit for the herd
- Annual profit per average cow (annualized

Example: Protein yield

- Base situation: Profit per cow
- Protein breeding value increased by 1 kg for all 1st lactation cows: Profit per cow
 - Protein yield in later lactations constant
 - Milk and fat constant
 - All other traits unchanged
- Difference in profit per cow

 value of increasing protein breeding value by 1 kg in 1st lactation

Economic scenarios

Workshop 2017: Increased production in organic herds should be considered

Current share of milk from organic NAV herds: ~15 %

Separate calculation of economic values in a Conventional and Organic scenario

Separate economic scenarios per country (DNK, SWE,FIN)

Scenarios DNK SWE FIN Biological parameters: Production levels per breed and country DNK: RDM, DH, Jersey SWE: SRB, SLB FIN: FAY, HOL

Parameters that differ per breed and country (in "2018 Review of Nordic Total Merit Index – Appendix; Biological and economic assumptions")

- Weights, Calving age, Yield, Fertility, Stillbirth rate
- Calving difficulty, Frequency of diseases, Claw health, Young stock survival

NAV Replacement rate

Changes since 2008 New traits

- Claw health introduced 2011
- Young Stock Survival introduced 2016

• In General health 2017: Ketosis and other metabolic become separate traits

Changes since 2008: Economic assumptions

Much more detailed than in 2008

- Milk price more fluctuating than before
- Beef prices higher very high in SWE (But, costs of producing surplus heifers have increased, due to higher feed costs)
- Generally increased costs (Wages, AI)
- Veterinary costs
 - Much higher cost
 - Health agreement schemes reduce costs for some diseases (especially mastitis) – common in DNK, similar programs tested in SWE and FIN. For 2028 it is assumed that health agreement schemes are common in all countries.
- NAV Organic: No health agreement schemes

Changes since 2008

Biological assumptions – production levels

- In many cases of no/low importance (e.g. yield)
- Calving ease: Lower freq. of difficult calvings: It will reduce economic value of calving ease
- Replacement rate: Lower replacement rate More surplus heifers

Replacement rate, pct.

	HOL (JER similar – RDC smaller difference)					
	DNK	SWE	FIN			
2008	42.4	41.6	39.4			
2018 conventional	37.1	35.9	32.5			
2018 organic	34.5	32.6	30.1			
Dif. conventional	-5.3	-5.7	-6.9			
Dif. organic	-7.9	-9.0	-9.3			
2028 assumed	32.0	32.0	32.0			

Calving ease (4 categories): Pct. difficult with vet. ass. (high cost - category)

	RDC (HOL is similar)				
	DNK	SWE	FIN		
2008, 1 st	1.5	1.2	1.0		
2018, 1 st	0.4	0.3	0.1		
Difference, 1 st	-1.1	-0.9	-0.9		
2008, later	1.0	0.3	0.6		
2018, later	0.4	0.3	0.2		
Difference, later	-0.6	0.0	-0.4		

Changes since 2008

Structural changes due to use of sexed semen

Use of sexed semen for 1st AI (data from 2016)

	RDC		HOL			JER	
	DNK	SWE	FIN	DNK	SWE	FIN	DNK
Heifers	30	5	5	30	9	9	42
Cows	4	2	4	3	2	5	20

Workshop 2017: Increased use of sexed semen should be considered

Replacement rate, sexed semen and beef semen

2017 situation

- Replacement rate much lower than in 2008
- Sexed semen used mostly for heifers (most in DNK)

Consequence: Large surplus of replacement heifers

 Beef semen is used for cows in order to reduce number of surplus heifers

Future: Replacement rate and sexed semen

Replacement rate: 32% all breeds and countries

Use of sexed semen in the NTM-model - Sexed semen only used at 1st AI – otherwise conventional semen

• 52% of calves born at 1st calving are by sexed semen Rest (48%) at 1st calving by conventional semen (pure breed)

• 3-4% of calves born by older cows are by sexed semen Rest (96-97%) at later calvings are by conventional – pure breed or beef breed

Future: Beef semen

Replacement heifers (incl. those disposed before 1.calving):

- Around 65% at 1st calving (45% by sexed semen 20% conv. semen)
- Rest at later calvings (35%)

For the remaining older cows

Beef semen

NДV

• In the new NTM-model there are no surplus heifers

Heifer-crosses treated as slaughter animals

Genetic improvement will only affect crosses by 50% compared to purebred (growth, form, young stock survival, direct calving traits(birth index))

Basic results for single traits Average of DNK, SWE and FIN

Table 2.2 – 2.8 in "Review of Nordic Total Merit Index – Results"

Results presented

- Original 2008-results
- Classic: No sexed semen no beef semen otherwise as new model (large number of surplus heifers)
- Conventional: With sexed semen and balancing beef crosses
- Organic: As conventional but separate economic parameters and production level

Basic results for single traits Average of DNK, SWE and FIN

Table 2.2 – 2.8 in "Review of Nordic Total Merit Index – Results"

Yield, Diseases, Claw health, Conformation

 Values are independent of use of sexed semen and beef semen (similar in "classic" and conventional)

Beef production, Fertility, Calving traits, Young Stock Survival, Longevity

- Values depend of use of sexed semen and beef semen
- Number of animals expressing the traits

Basic numbers - SWE HOL, 110 cows

	2008	Classic	Conv.	Organic
Number of calvings/year	115.16	111.74	111.74	111.74
Replacement rate	41.6%	32.0%	32.0%	32.0%
Distribution 1 st calvings	39.7%	31.5%	31.5%	31.5%
Distribution 2 nd calvings	27.4%	25.5%	25.5%	25.5%
Distribution 3 ^{rd+} calvings	32.9%	43.0%	43.0%	43.0%
Heifer calves born	57.6	55.9	40.4	40.4
Bull calves born	57.6	55.9	19.6	19.5
Heifer Beef crosses	0.0	0.0	25.9	25.9
Bull beef crosses	0.0	0.0	25.9	25.9
Heifers needed for replacement	45.7	35.2	35.2	35.2
Preg. sold (Surplus heifers)	4.3	14.0	0.0	0.0

Results: Production traits

		Original	Classic	Conventional	Organic		
		Value of kg standard milk, €/kg					
	HOL	0.181	0.191	0.191	0.143		
	RDC	0.190	0.189	0.189	0.141		
	JER	0.160	0.191	0.191	0.145		
		Val	ue of net. Dai	ly gain €/(g/da	ay)		
	HOL	0.171	0.219	0.213	0.077		
	RDC	0.187	0.251	0.230	0.092		
	JER	0.019	0.216	0.192	0.007		
		Value of EUROP form €/point					
	HOL	13.3	14.2	23.8	26.0		
	RDC	12.9	14.6	24.4	27.7		
	JER	8.5	7.8	13.8	14.7		
NAV							

Mastitis and other diseases

Breeding value of "Frequency of 1st cases"

• 1st, 2nd and 3rd lactation

Value depends on:

- Total number of cases (number of repeated treatments)
- Cost of veterinary treatment (and health schemes)
- Extra work

NAV

Discarded milk

Mastitis and other diseases

Summary of results:

 2008 – Classic/Conventional: Moderate increase despite large increase in vet. costs – health schemes reduces costs.

Conventional vs organic: Large increase in value – most for mastitis

Claw health

Breeding value of 1st cases

• 1st, 2nd and 3rd lactation

Value depends on:

- Total number of cases
- Cost of clawtrimmer treatments
- Extra work

Relatively small changes compared to 2008
 Relatively small differences between conv. and organic

"Conformation" traits

Approach (same as in 2008)

- Estimated by a group of producers/breeders
- Saved work in a herd of 70 cows (converted to current herd size)
- Improvement of +1 point for all traits

Estimates of saved work - minutes per day

- Body
 0 min. saved/day
- Feet & Legs 10 min. saved/day
- Udder 15 min. saved/day
- Milking speed 10 min. saved/day
- Temperament 5 min. saved/day

ΝΔν

Conformation results

- No breed differences in saved work
- No difference between conventional and organic

• Labour costs is different per country (they were similar in 2008)

 Increase in labour cost is largest in DNK – therefore increase in values of conformation traits are largest for JER

Fertility assumptions

Factors of importance:

• Al Costs:

- 21.44 €/AI average (lower in DNK higher in SWE, FIN)
- Extra 11 €/AI for sexed semen)
- Costs related to sire selection excluded
- Work (for AI and heat surveillance)
- Beef production profit (extra calves)
- Milk production profit (extra milk production)

Fertility Results

Better fertility

- Less AI costs (only IFL)
- More calvings/year (more heifer and bull calves born)

Conventional compared to 2008/Classic scenario:
In conv./organic cows room for more beef crosses
In conv./organic AI costs are larger
In organic compared to conventional:
Lower value because beef production is not so profitable

Calving traits (maternal and direct)

Stillbirth

- Different stillbirth rates in heifers and bull calves
- Extra work, costs of destruction
- Profit from beef production
- Number of heifers available
- Note: Direct effect of genetic improvement is only 50% for beef crosses

Calving ease

- With or without veterinary assistance (changed distribution)
- Extra work
- Note: Direct effect of genetic improvement is only 50% for beef crosses

Lower replacement rate

• Fewer 1st calvings – lower value per average cow

More later calvings – higher value per average cow

Calving traits – maternal and direct Value, €/pct change (HOL)

			Conv.	Organic	Conv.	Org.
HOL	2008	Classic	maternal	maternal	direct	direct
Stillbirth, 1 st	1.915	1.637	1.613	1.395	1.613	1.395
Stillbirth,later	3.095	3.642	3.918	3.048	2.548	2.010
Calving ease, 1 st	10.99	5.63	5.63	5.85	5.63	5.85
Calving ease, later	14.86	15.03	26.58	28.00	15.67	16.58

Young Stock survival Value, €/pct change (RDC)

RDC	2008	Classic	Conv.	Organic
Survival heifers 2-30 days	3.40	2.52	3.30	3.19
Survival heifers 31-458 days	4.06	3.26	3.66	3.77
Survival bulls 2-30 days	1.89	2.70	1.92	1.44
Survival bulls 31-184 days	2.96	2.93	2.10	1.76

- 2008-Classic: Value of surplus heifers lower value beef production higher
- Conv.: Every survived heifer makes room for an extra beef cross
- Organic: Beef production is not so profitable

Longevity

Approach: Changing culling rate/replacement rate

Effect

- Distribution of lactations and milk production
- Number of calvings per year more heifer and bull calves born
- Increased longevity: More older cow

Most longevity value redistributed to other traits

Summary

Single trait economic values calculated for:Conventional and Organic scenario

7 country x breed situations

Next step:Converting to values per index unit

